寫點東西吧,懒人。

Kubernetes 自动扩缩容
· ☕ 1 分钟
本文状态:草稿 配置例子 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 apiVersion: autoscaling/v2beta2 kind: HorizontalPodAutoscaler metadata: name: php-apache spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: php-apache minReplicas: 1 maxReplicas: 10 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 50 算法 desiredReplicas = ceil[currentReplicas * ( currentMetricValue / desiredMetricValue

内核同步原语
· ☕ 5 分钟
什么是同步原语 共享内存,多进程/线程的运行期设计模式已成主流的今天,你有好奇一下,进程/线程间的怎么同步的吗?大部分人知道,我们用的开发语言

Istio Canary(金丝雀) 上线
· ☕ 1 分钟
按比例分配分配新旧版本流量 VirtualService: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 apiVersion: networking.istio.io/v1alpha3 kind: VirtualService metadata: name: reviews spec: hosts: - reviews http: - route: - destination: host: reviews subset: v1 weight: 75 - destination: host: reviews subset: v2 weight: 25 DestinationRule : 1 2 3 4 5 6 7

系统级跟踪 eBPF 工具 —— bpftrace 入门
· ☕ 1 分钟
bpftrace 简介 bpftrace 简单使用 查询可以跟踪的内核函数,以 sleep 为关键字 1 2 3 4 5 6 7 8 $ bpftrace -l '*open*' tracepoint:syscalls:sys_exit_open_tree tracepoint:syscalls:sys_enter_open ... kprobe:vfs_open kprobe:tcp_try_fastopen ... 跟踪所有 sys_enter_open() 系统调用 1 $ bpftrace -e 'tracepoint:syscalls:sys_enter_open{ printf("%s %s\n", comm,str(args->filename)); }' | grep vi 然后在另外

Kernel - Page Frame 回收
· ☕ 4 分钟
From [Understanding The Linux Kernel] Page Frame 回收 之前我们了解到,Linux 倾向用最多的内存做 Page Cache。这使我们不得不考虑如何在内存不足前回收内存。问题是,回收内存的程

Kernel - Pagecache
· ☕ 1 分钟
简介 page cache 存放的数据的类型 普通的文件 目录数据 直接读取自 block device file 的数据 已经被swap out的用户进程内存的数据(可以强制内核在page cahce中

Kernel - Pagecache - Core
· ☕ 3 分钟
address_space 数据结构 Page cahce 的核心数据结构是 addrees_space。一般来说,每个 inode (Kernel 用来存放文件元信息的内存中的数据结构,可以视为一个文

· ☕ 1 分钟
$ pip install md-translate export md-translate -s Google -S en -T zh-CN ./java-native-mem.md Ref https://github.com/ilyachch/md_docs-trans-app

· ☕ 1 分钟
https://shaharmike.com/cpp/vtable-part2/

· ☕ 4 分钟
https://tenzir.com/blog/production-debugging-bpftrace-uprobes/ https://shaharmike.com/cpp/vtable-part1/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 #include <iostream> class Parent { public: virtual void Foo() {} virtual void FooNotOverridden() {} }; class Derived : public Parent { public: void Foo() override {} }; int main() { Parent p1, p2; Derived d1, d2; std::cout << "done" << std::endl; } $ # compile our code with debug symbols and start debugging using gdb $ clang++ -std=c++14 -stdlib=libc++ -g main.

· ☕ 1 分钟
https://netflixtechblog.com/predictive-cpu-isolation-of-containers-at-netflix-91f014d856c7

· ☕ 1 分钟
https://www.youtube.com/watch?v=spzfupads2o#fromHistory Envoy Internals Deep Dive - Matt Klein, Lyft

· ☕ 5 分钟
Terminology Cluster: a logical service with a set of endpoints that Envoy forwards requests to. Downstream: an entity connecting to Envoy. This may be a local application (in a sidecar model) or a network node. In non-sidecar models, this is a remote client. Endpoints: network nodes that implement a logical service. They are grouped into clusters. Endpoints in a cluster are upstream of an Envoy proxy. Filter: a module in the connection or request processing pipeline providing some aspect of request handling.